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Abstract

In this paper we survey the use of different AI methods for algorithmic composition, present their advantages and
disadvantages, discuss some important general issues and propose desirable future prospects

1 Introduction
Algorithmic composition could be described as “a sequ-
ence (set) of rules (instructions, operations) for solving
(accomplishing) a [particular] problem (task) [in a finite
number of steps] of combining musical parts (things, ele-
ments) into a whole (composition)”, (Cope, 1993)1. From
this definition we can see that it is not necessary to use
computers for algorithmic composition as we often in-
fer; Mozart did not when he described the Musical Dice
Game.

The concept of algorithmic composition is not some-
thing new. Pythagoras (around 500 B.C.) believed that
music and mathematics were not separate studies. Hiller
and Isaacson (1959) were probably the first who used a
computational model using random number generators
and Markov chains for algorithmic composition. Since
then many researchers have tried to address the
problem of algorithmic composition from different points
of view.

In this paper we give a short review of these attempts
(section 2) followed by a general discussion (section 3),
some desirable future prospects (section 4) and we finish
with some conclusions (section 5).

2 The survey
A review such as this can never be exhaustive, firstly due
to lack of space and secondly because there have been
so many attempts. Here we briefly review some recent
characteristic work. Most, if not all, of this work involves
implementation and not just theory, and was carried out
in the last decade.

In the following subsections we give some repres-
entative examples of systems which employ different AI

1Panel Discussion in the ICMC ’93, concatenation of different defin-
itions of the two words.

methods which we categorise, based on their most prom-
inent feature, as follows:

Mathematical models
Knowledge based systems
Grammars
Evolutionary methods
Systems which learn, and
Hybrid systems

The categorisation is not straightforward since many
of the AI methods can be considered as equivalent: for
example Markov chains are similar to type-3 grammars
(Chomsky, 1957)2. Furthermore some of the systems
have more than one prominent feature, for example EMI
(see below) was categorised as a grammar, but it can also
be seen as a knowledge based system or even a system
which learns. In such cases we chose the method which
was more responsible for the generation of the musical
output.

The length of the subsections varies, reflecting the
amount of research done in such field in the AI domain
generally (evolutionary methods and systems which learn
are the most popular methods).

The structure of each subsection is: we begin by stat-
ing the possible reasons for using such methods, then we
present some representative examples and finally briefly
discuss the disadvantages of each of the methods.

2.1 Mathematical models
Stochastic processes (reviewed by Jones, 1981) and es-
pecially Markov chains (Ames, 1989; Cambouropoulos,
1994) have been used extensively in the past for algorith-
mic composition (e.g.,Xenakis, 1971). Probably the most
important reason for this is their low complexity which
makes them good candidates for real-time applications.
Many commercial programs use stochastic processes for
this reason (e.g., M and Jam Factory, see Zicarelli, 1987).

2See also Ames (1989, p. 185) for a different opinion.
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Cybernetic Composer (Ames and Domino, 1992) is
a representative example of such models. It composes
pieces in different genres, such as jazz, rock or ragtime.
One of the interesting features of this system is that it first
deduces the rhythm of the melody using Markov chains,
and then chooses the pitches at a later stage.

We also see computational models based on chaotic
nonlinear systems (see, for example Pressing, 1988; Her-
man, 1993; Harley, 1994) or iterated functions (Gogins,
1991) but it is difficult to judge the quality of their out-
put, because, unlike all the other approaches, their “know-
ledge” about music is not derived from humans or human
works.

Conklin and Witten (1995) examine the prediction
and generation of music using a multiple viewpoint sys-
tem. They use machine learning techniques to extract the
information from a number of examples in order to create
their models. These are measured based on the notion of
entropy or unpredictability (Shannon, 1951) and are used
to create new pieces.

The main disadvantages of stochastic processes are:

First, someone needs to find the probabilities by
analysing many pieces. Something necessary if we
want to simulate one style; and

Second, the deviations from the norm and how they
are incorporated in the music is an important as-
pect (it is difficult to capture higher or more abstract
levels of music)3.

2.2 Knowledge based systems
In one sense, most AI systems are knowledge based sys-
tems (KBS). Here, we mean systems which are symbolic
and use rules or constraints. The use of KBS in music
seems to be a natural choice especially when we try to
model well defined domains or we want to introduce ex-
plicit structures or rules. Their main advantage is that they
have explicit reasoning; they can explain their choice of
actions.

Ebcioglu (1988) implemented his own Backtracking
Specification Language (BSL) and used it to implement
CHORAL, a rule-based expert system for the harmoniza-
tion of chorales in the style of J.S.Bach.

Harmonization is usually reviewed as a constraint sat-
isfaction problem, dealing with constraints such as voice
range, voice leading, etc. Tsang and Aitken (1991) and
Pachet and Roy (1998) use constraint logic programming
(CLP) and constraint satisfaction techniques (CSP) re-
spectively for harmonization, with the former being much
more efficient.

Ramalho and Ganascia (1994), Zimermann (1998)
and Robertson et al. (1998) tried to simulate creativity by
making intention-based music.

3See also section 4

Ramalho and Ganascia used the notion of potential
actions (Pachet, 1990; Pachet et al., 1996) in order to cre-
ate real-time jazz improvisations. Instead of using ran-
domness to emulate creativity they used a set of poten-
tial actions as an initial state (reference) for their musical
problem (to create playable improvisations).

Zimermann used multimedia presentations as a refer-
ence for the intensional structure of the music. Robertson
et al. adapted musical techniques used in films to generate
atmospheric music suited to an educational virtual envir-
onment. The desired tension curve of the music was used
as an input to the system.

Even though KBS seem to be the most suitable choice,
as a stand alone method, for algorithmic composition they
still exhibit some important problems:

Knowledge elicitation is difficult and time consum-
ing, especially in subjective domains such as music.

Since they do what we program them to do they
depend on the ability of the “expert”, who in many
cases is not the same as the programmer, to clarify
concepts, or even find a flexible representation.

They become too complicated if we try to add all
the “exceptions to the rule” and their preconditions,
something necessary in this domain.

For more knowledge based, and not only, approaches
see Balaban et al. (1992) or Schwanauer and Levitt
(1993).

2.3 Grammars
“The idea that there is a grammar of music is probably as
old as the idea of grammar itself” (Steedman, 1996).

Experiments in Musical Intelligence (EMI) is a pro-
ject focused on the understanding of musical style and
stylistic replication of various composers (Cope, 1991,
1992). EMI needs as an input a minimum of two works
from which extracts “signatures” using pattern matching.
The meaningful arrangement of these signatures in rep-
licated works is accomplished through the use of an aug-
mented transition network (ATN).

Steedman (1984) devised a generative grammar for
chord progressions in jazz twelve-bar blues and refined it
(Steedman, 1996) using categorial grammars (Steedman,
1989) because “they allow left-branching analyses of
what are traditionally viewed as right-branching construc-
tions” making them “incrementally interpretable from left
to right”, which simulates more closely the listener’s per-
ception and interpretation of the chord progressions.

Johnson-Laird (1991) used also grammars for the gen-
eration of jazz chord progressions and bass line impro-
visations.

Some basic problems of the grammars are:

They are hierarchical structures while much mu-
sic is not (i.e improvisation). Therefore ambiguity
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might be necessary since it “can add to the repres-
entational power of a grammar” (Roads, 1985)

Most, if not all, musical grammar implementations
do not make any strong claims about the semantics
of the pieces.

Usually a grammar can generate a large number
musical strings of questionable quality.

Parsing is, in many cases, computationally expens-
ive especially if we try to cope with ambiguity.

For a more complete review on grammars in music
see Roads (1985).

2.4 Evolutionary methods
Genetic algorithms (GAs) have proven to be very efficient
search methods (Holland, 1975; Goldberg, 1989), espe-
cially when dealing with problems with very large search
spaces. This, coupled with their ability to provide mul-
tiple solutions, which is often what is needed in creative
domains, makes them a good candidate for a search en-
gine in a musical application.

We can divide the following attempts into two cat-
egories based on the implementation of the fitness func-
tion.

Use of an objective fitness function In this case the
chromosomes are evaluated based on formally stated,
computable functions. Horner and Goldberg (1991) used
GAs for thematic bridging between very simple melodies.
McIntyre (1994) generated a four part Baroque harmon-
ization of an input melody, using only the C major scale
in order to reduce the search space. Spector and Alpern
(1994) used genetic programming (GP) (Koza, 1992) in
order to generate programs that produce a four-measure
melody as an output when given a four-measure melody
as an input. They used five critical functions to evaluate
the response.

Papadopoulos and Wiggins (1998) used a symbolic
GA with problem dependent genetic operators, variable
length chromosomes and a fitness function which eval-
uated eight different characteristics of the melody, such
as consecutive intervals, note durations, contour, in order
to evolve jazz melodies based on a given chord progres-
sion. This and another study on harmonization (Phon-
Amnuaisuk et al., 1999) make clear that the efficacy of
the GA approach depends heavily on the amount of know-
ledge the system possesses; even so they conclude that
GAs are not ideal for the simulation of human musical
thought because “their operation in no way simulates hu-
man behaviour” (Wiggins et al., 1999).

Use of a human as a fitness function Usually we refer
to this type of GA as interactive-GA (IGA). In this case
a human replaces the fitness function in order to evalu-
ate the chromosomes. Jacob (1995) devised a composing

system; Horowitz (1994) generated “tasteful” rhythmic
patterns; Ralley (1995) developed melodies; and Biles
(1994), evolved a “novice jazz musician learning to im-
provise”. All these attempts exhibit two main drawbacks
associated with all IGAs:

Subjectivity (Ralley, 1995), and

Efficiency, the “fitness bottleneck” (see Biles 1994)
– the user must hear all the potential solutions in
order to evaluate a population.

Moreover, this approach tells us little about the men-
tal processes involved in music composition since all the
reasoning is encoded inaccessibly in the user’s mind.

Most of the approaches above exhibit very simple rep-
resentations in an attempt to decrease the search space,
which in some cases compromises their output quality.

For a more complete summary of GA/GPwork in mu-
sic see Burton and Vladimirova (1997b).

2.5 Systems which learn
In the category of learning systems are systems which, in
general, do not have a priori knowledge (e.g. production
rules, constraints) of the domain, but instead learn its fea-
tures by examples. We can further classify these systems,
based on the way they store the information, to subsym-
bolic/distributive (Artificial Neural Networks, ANN) and
symbolic (Machine Learning, ML).

ANNs have been used extensively in the last years for
musical applications (Todd and Loy, 1991; Leman, 1992;
Griffith and Todd, 1997), and have been relatively suc-
cessful, especially in domains such as perception and cog-
nition.

Todd (1989) used a feed-forward ANN with feedback
for melody generation. Mozer (1994) generated melodies
using ANNs which, as he states, “are preferred over com-
positions generated by a third-order transition table” but
still “suffer from a lack of global coherence”.

Bellgard and Tsang (1994) constructed an effective
Boltzmann machine (EBM) for harmonization. The in-
teresting feature of their system is that not only it gener-
ates harmonies non-deterministically, but it also provides
a measure of their relative quality.

Toiviainen (1995) trained a ANN for jazz improvisa-
tion, while Hörnel and Degenhardt (1997) did the same
for baroque-style melodic improvisation. Hörnel (1997),
finally, created baroque-style chorale variations.

Melo (1998) used two cooperative ANNs operating
on different levels in an attempt to capture harmonic ten-
sion in music. The ANNs were trained based on the me-
diant of the tension curve reported by 10 listeners who
were asked to listen to the last movement of Prokovief’s
1st Symphony and to indicate their estimation of dynamic
musical tension by pushing a sprung wheel. The ANNs
could predict quite well the tension of an unseen part of
the piece (80% was used as training data) and could also
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generate music, based on a given tension curve, but not as
successfully.

ML implementations are not very common. Wid-
mer (1992) used ML for the harmonization of melod-
ies. Cope’s work (see above) could also fit into this cat-
egory. (Ponsford et al., forthcoming) derived a probabil-
istic grammar capturing the harmonic movement of a cor-
pus of seventeenth-century dance music.

Schwanauer (1993) used five learning techniques,
learning by rote, learning from instruction, learning from
failure, learning from examples, learning by analogy and
learning from discovery for the implementation of a sys-
tem (MUSE) which could accomplish different harmoniz-
ation tasks, from the simpler, completing the inner voices
for a given soprano and bass, to the most general, har-
monizing a chorale.

ANNs offer an alternative for algorithmic composi-
tion to the traditional symbolic AI methods, one which
loosely resembles the activities in the human brain, but at
the moment they do not seem to be as efficient or as prac-
tical, at least as a stand-alone approach. Some of their
disadvantages are:

Composition as compared with cognition is a
much more highly intellectual process (more “sym-
bolic”). The output from a ANN matches the prob-
ability distribution of the sequence set to which it
is exposed (Bharucha and Todd, 1991), something
which is desirable, but on the other hand shows
us its limit: “While they (ANNs) are capable of
successfully capturing the surface structure of a
melodic passage and produce new melodies on the
basis of the thus acquired knowledge, they mostly
fail to pick up the higher-level features of music,
such as those related to phrasing or tonal functions”
(Toiviainen, 1999).

The representation of time can not be dealt effi-
ciently even with ANNs which have feedback.

Usually they solve toy problems, with many sim-
plifications, when compared with the knowledge
based approaches (Toiviainen, 1999).

They can not even reproduce fully the training set
and when they do this it might mean that they did
not generalise.

Even though it seems exciting that a system learns
by examples this is not always the whole truth since
the human in many cases needs to do the “filtering”
in order not to have in the training set examples
which conflict.

Usually, the researchers using ANNs say that their
advantage over knowledge based approaches is that
they can learn from examples things which can’t
be represented symbolically using rules (i.e. the
“exceptions”). However, we haven’t seen such sys-
tems.

2.6 Hybrid systems
Hybrid systems are ones which use a combination of AI
techniques. In this section we discuss systems which
combine evolutionary and connectionist methods, or sym-
bolic and subsymbolic ones.

The reason behind using hybrid systems, not only for
musical applications, is very simple and logical. Since
each AI method exhibits different strengths then we
should adopt a “postmodern” attitude (Gutknecht, 1992)
by combining them.

Gibson and Byrne (1991) created simple harmoniz-
ations, using only the tonic subdominant and dominant
chords, of short melodies using a combination of a GA
and cooperating ANNs. Spector and Alpern (1995) used
GP to create a one measure response to a one measure
‘call’, with a ANN as a fitness evaluator of the response.

Biles et al. (1996), in an attempt to increase the effi-
ciency of Biles’ (1994) system, also used a ANN as a fit-
ness function, without very successful results. Burton and
Vladimirova (1997a) used an Adaptive Resonance Theory
(ART) ANN to assign fitness measures to rhythms gener-
ated by a GA.

HARMONET (Hild et al., 1992; Feulner, 1993) is a
hybrid system which harmonizes melodies using a com-
bination of a ANN (which learns different harmoniza-
tions) with constraints satisfaction techniques (in order to
fill in the inner voices). It uses distributive representation
but unlike other ANN representations the input nodes do
not represent notes rather harmonic functions (i.e tonic,
dominant).

The main disadvantage of hybrid systems is that they
are usually complicated, especially in the case of tightly-
coupled or fully integrated models. The implementation,
verification and validation is also time consuming.

3 Discussion
In this section we present a general discussion of some
issues raised by our survey.

3.1 Evaluation of the systems
We can not help not to notice a twofold lack of experi-
mental methodology in many research reports in this area.
First there is usually no evaluation of the output by real
experts (e.g., professional musicians) in most of the sys-
tems and second, the evaluation of the system (algorithm)
is given relatively small consideration with respect to the
length of the report.

There are some musical questions about systems
which only generate melodies (e.g., Todd, 1989; Ralley,
1995; Spector and Alpern, 1995). How can we expect to
evaluate the musical output if we do not have a harmonic
context for it? Most melodies will sound acceptable in
some context or other.



HARMONET (see above) is an example of successful
task allocation. Even though the authors state that it’s a
ANN, we believe that it is its hybrid nature (ANN + CSP)
which makes it effective. A ANN would be much less
successful at filling in the inner voices. So it would be
a big claim to say that the ANN is responsible for the
success.

Finally, most of the systems deal with algorithmic
composition as a problem solving task rather as a creat-
ive and meaningful process (see also sections 3.3 and 4,
below).

3.2 Knowledge representation
Two almost ubiquitous issues in AI are representation of
knowledge and search method. From one point of view,
our categorisation above, reflects the search method,
which however, constrains the possible representations of
knowledge. For example structures which are easily rep-
resented symbolically are often difficult to represent with
a ANN.

In many AI systems, especially symbolic, the choice
of the knowledge representation is an important factor in
reducing the search space. For example Biles (1994) and
Papadopoulos and Wiggins (1998) (see section 2) used a
more abstract representation, representing the degrees of
the scale rather than the absolute pitches. This reduced
immensely the search space since the representation did
not allow the generation of non-scale notes (they are con-
sidered dissonant) and the inter-key equivalence was ab-
stracted out.

Most of the systems reviewed exhibit a single, fixed
representation of the musical structures. Some, on the
other hand, use multiple viewpoints (e.g., Ebcioglu,
1988; Conklin and Witten, 1995) which we believe simu-
late more closely human musical thinking.

3.3 Computational Creativity
Probably the most difficult task is to incorporate in our
systems the concept of creativity. This is difficult since
we do not have a clear idea of what creativity is (Boden,
1996).

Some characteristics of computational creativity,
which were proposed by Rowe and Partridge (1993) are:

Knowledge representation is organised in such a
way that the number of possible associations is
maximised. A flexible knowledge representation
scheme. Similarly Boden (1996) says that repres-
entation should allow to explore and transform the
conceptual space.

Tolerate ambiguity in representations.

Allowmultiple representations in order to avoid the
problem of “functional fixity”.

The usefulness of new combinations should be as-
sessable.

New combinations need to be elaboratable to find
out their consequences.

One question that AI researchers should aim to answer
is: do we want to simulate human creativity itself or the
results of it? (Is DEEP BLUE creative, even if it does not
simulate the human mind?) This is more or less similar to
the, subtle in many cases, distinction between cognitive
modeling and knowledge engineering.

Even after all these, will computers be able to emulate
our musical thinking? Kugel (1990), in a very interesting
article, expands on what Myhill (1952) seems to have first
proposed, that there is more than computing in musical
thinking. He proposes that we should add uncomputable
processes “to our conceptual palette”. These have also
been called trial-and-error processes by Putnam (1965)
and limiting-computable processes by Gold (1965).

4 Prospects for the future
In this section we discuss the possible future prospects in
algorithmic composition.

The big disadvantage of most, if not all, the compu-
tational models (in varying degrees) is that the music that
they produce is meaningless: the computers do not have
feelings, moods or intentions, they do not try to describe
something with their music as humans do. Most of hu-
man music is referential or descriptive. The reference can
be something abstract like an emotion, or something more
objective such as a picture or a landscape.

How can we incorporate concepts such as musical
meaning in systems?

We propose that future systems should explicitly
refer to and evaluate factors such as musical ten-
sion (Lerdahl, 1988, 1996), intension (Ramalho
and Ganascia, 1994; Zimermann, 1998), expecta-
tion and melodic closure (Narmour, 1990, 1992).
Let us make this more clear with a simple example.
If we have a statistical analysis (or train a ANN) on
the dynamics of a piece and we find that 10% of the
notes are relatively “loud” (or have something like
this as “distributed knowledge” in the case of the
ANN) we lose the important fact that it’s the con-
text which matters (these notes are probably related
and not distributed randomly, creating for example
a crescendo). It is this planned deviation from the
norm and how it is accomplished that gives mean-
ing to music (Meyer, 1956).

The performance of a piece is another important
factor and should not be regarded as irrelevant in
the context of algorithmic composition. Especially
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in cases of improvised music the rhythmic devi-
ations and the “gestures” are responsible for mean-
ing (Keil, 1994). We have all felt “strange” the
first time we heard a computerised reproduction of
a known musical piece.

We propose that geometrical models of pitch space
and pitch perception (Longuet-Higgins, 1962a,b;
Balzano, 1980; Shepard, 1982), even though they
exhibit some disadvantages (Krumhansl, 1990),
could prove useful if we incorporate them in such
systems, something which was more implicit than
explicit in some of the above implementations.
ANNs also seem to be a valid choice for a cognitive
model of pitch perception, especially tonality (see
for example Rowe, 1993).

We need multiple, flexible, dynamic, even expand-
able representations because this will more closely
simulate human behaviour.

What is missing is a thorough-going account of mu-
sical cognition from the early stages of perception to the
complex stage of creation and composition.

5 Conclusion
In this paper we have given a critical review of different
AI approaches for algorithmic composition.

Systems based on only one method do not seem to
be very effective. We could conclude that it will become
more and more common to “blend” different methods and
take advantage of the strengths of each one.

Finally, an exciting, but very difficult, prospect is that
of an integrated system which evolves; a system which
absorbs new knowledge (being able to combine different
styles, showing creativity).
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1998.



S. Phon-Amnuaisuk, A. Tuson, and G. Wiggins. Evolving Mu-
sical Harmonization. In ICANNGA’99, Slovenia, 1999.

D. Ponsford, G. Wiggins, and C. Mellish. Statistical Learning of
Harmonic Movement. Computer Music Journal, forthcom-
ing.

J. Pressing. Nonlinear Maps as Generators of Musical Pitch.
Computer Music Journal, 2 (2):35–46, 1988.

H. Putnam. Trial-and-Error Predicates and the Solution to a
problem of Mostowski. Journal of Symbolic Logic, 30 (1):
49–57, 1965.

D. Ralley. Genetic algorithms as a tool for melodic develop-
ment. In Proceedings of the International Computer Music
Conference, 1995.

G. Ramalho and J. G. Ganascia. Simulating Creativity in Jazz
Performance. In B. Hayes-Roth and R. Korf, editors, Na-
tional Conference on Artificial Intelligence 1994, volume 1,
pages 108–113. The AAAI/The MIT Press, 1994.

C. Roads. Grammars as Representations for Music. In C. Roads
and J. Strawn, editors, Foundations of Computer Music,
pages 403–442. MIT Press, 1985.

J. Robertson, A. de Quincey, T. Stapleford, and G. Wiggins.
Real-Time Music Generation for a Virtual Environment. In
ECAI98 workshop on AI/Alife and Entertainment, Brighton,
England, 1998.

J. Rowe and D. Partridge. Creativity: A survey of AI ap-
proaches. Artificial Intelligence Review, 7:43–70, 1993.

R. Rowe. Interactive music systems : machine listening and
composing. MIT Press, 1993.

S. M. Schwanauer. A Learning Machine for Tonal Composi-
tion. In S.M. Schwanauer and D.A. Levitt, editors, Machine
Models of Music, pages 511–532. MIT Press, 1993.

S. M. Schwanauer and D. A. Levitt. Machine Models of Music.
MIT Press, 1993.

C. E. Shannon. Prediction and entropy of printed English. Bell
System Tchnical Journal, pages 50–64, 1951.

R. N. Shepard. Geometrical Approximations to the Structure of
Musical Pitch. Psychological Review, 89:305–333, 1982.

L. Spector and A. Alpern. Critisism, Culture, and the Auto-
matic Generation of Artworks. In B. Hayes-Roth and R. Korf,
editors, National Conference on Artificial Intelligence 1994,
volume 1, pages 3–8. The AAAI/The MIT Press, 1994.

L. Spector and A. Alpern. Induction and recapitulation of deep
musical structure. In Proceedings of the IJCAI-95 Workshop
on Artificial Intelligence and Music, 1995.

M. Steedman. A Generative Grammar for Jazz Chord Se-
quences. Music Perception, 2:52–77, 1984.

M. Steedman. Grammar, Interpretation and Processing from the
Lexicon. In W. Marslen-Wilson, editor, Lexical Representa-
tion and Process. MIT Press, 1989.

M. Steedman. The Blues and the Abstract Truth: Music and
Mental Models. In A. Garnham and J. Oakhill, editors,
Mental Models in Cognitive Science. Erlbaum, Mahwah, NJ,
1996.

P. M. Todd. A Connectionist Approach to Algorithmic Compos-
ition. Computer Music Journal, 13 (4):27–43, 1989.

P. M. Todd and G. Loy, editors. Music and Connectionism. MIT
Press, 1991.

P. Toiviainen. Modeling the target-note technique of bebop-style
jazz improvisation: An artificial neural network approach.
Music Perception, 12 (4):399–413, 1995.

P. Toiviainen. Symbolic AI Versus Connectionism in Music Re-
search. In E. Miranda, editor, Readings in Music and Artifi-
cial Intelligence. Gordon and Breach, 1999.

C. P. Tsang and M. Aitken. Harmonizing music as a discip-
line of constraint logic programming. In Proceedings of the
International Computer Music Conference, Montréal, 1991.
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